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It has been reported that the accuracy of Coriolis mass flow meters can be adversely affected by
the presence of pulsations (at particular frequencies) in the flow. A full analysis of the transient
performance of a commercial Coriolis meter is only possible using finite element techniques.
However, this is a transient, nonlinear problem in which the space and time variables are not
(strictly) separable and the finite element techniques for tackling such problems make it
desirable to have an analytical solution for a simplified meter, against which the finite element
solution can be compared. This paper reports such a solution. The solution will also provide
guidance for experiments. Existing analytical solutions for the performance of Coriolis meters
in steady flow (a complex eigenvalue problem) are not easily extended to the transient flow case.
The paper thus begins with the presentation of an alternative solution for steady flow through
a simple, straight tube, Coriolis meter and it is notable that this solution gives a simple
analytical expression for the experimentally observed small change in the resonant frequency of
the meter, with flow rate, as well as an analytical expression for the meter sensitivity. The
analysis is extended to the transient case, using classical, forced vibration, modal decomposition
techniques. The solution shows that, unlike the steady flow case where the detector signals
contain components at the drive frequency and the second mode frequency (Coriolis frequency),
for pulsatile flow the detector signals will in general contain components involving at least four
frequencies. It is demonstrated that the meter error depends on the algorithm used to estimate
the phase difference from the detector signals. The particular flow pulsation frequencies which
could possibly lead to large meter errors are identified. ( 1998 Academic Press
1. INTRODUCTION

CORIOLIS MASS FLOW METERS are taking an ever increasing share of the flow meter market,
and the manufacturers claim that they give accurate measurements even in the presence of
flow transients. Thus they are widely used in batching processes, even when the flows are
driven by positive displacement pumps with consequent pulsations in the flow rate. Only
one report of an investigation into the influence of flow pulsations on meter accuracy has
been found. Vetter & Notzon (1994) tested two sizes of U-tube type Coriolis meters and
reported large meter errors for particular pulsation frequencies. The tests included both
single-frequency, sinusoidal, flow pulsations and pulsations resulting both from piston
pumps with fast acting valves and from gear pumps. In the latter cases, although the basic
frequencies of the pumps were quite low, the sharp waveforms led to significant Fourier
components at higher frequencies, and it was found that these could cause errors. Vetter
& Notzon suggest that problems arise when the frequency of the flow pulsations is equal to
one of the resonant frequencies of the meter and that they are most severe when the
frequency is equal to the Coriolis frequency (the use of this name for the frequency
of the vibration mode responsible for the Coriolis effect is not universal, possibly because
0829—9746/98/081025#15 $30.00/0 ( 1998 Academic Press
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it is not the dominant frequency of the signals which appear at the motion detectors on
a meter).

There have been a small number of reports of pulsation problems, from meter users, but
in no case has it been possible to obtain quantitative information about the flow pulsations,
and it has been suggested that in the majority of these cases the errors may be due to
mechanical vibrations rather than flow pulsations. In one case, it was suggested that there
may have been an airborne acoustic coupling between a strong sound source and the meter.
The meter manufacturers have well-defined recommendations concerning the mounting of
their meters and they claim that adherence to these recommendations will overcome the
majority of pulsation problems. Although errors due to flow pulsations may only occur
rarely, it is still important to gain an understanding of the problem, because it seems quite
probable that the errors may occur without any visible indication that there is a problem. In
this sense, the problem may be similar to the lock-in error problem with vortex shedding
flowmeters (Mottram & Robati 1985), rather than the errors due to pulsating flow through
an orifice plate, where a wildly fluctuating pressure difference gives a clear indication of
a problem.

There have been a considerable number of publications dealing with the dynamics of
fluid/pipe interactions in recent years. Surveys of the important work have been published
by Paidoussis & Issid (1974) and by Paidoussis & Li (1993). Almost all the work has been
directed towards questions of stability and where specific system information is given,
typical dimensionless stiffnesses are some three orders of magnitude less than those typical
of Coriolis flow meters. In both the above-referenced survey articles, and in papers such as
Ariaratnam & Namachchivaya (1986), the effects of pulsatile fluid flow are considered. The
latter paper concludes that ‘combination resonances’ are associated with sums of natural
system frequencies and fluid pulsation frequencies. For typical Coriolis meter systems,
which are driven at a natural frequency, it might be expected that both sums and differences
of the drive and the fluid pulsation frequencies will be significant.

There are two main published reports of analytical descriptions of the steady flow
behaviour of Coriolis flow meters. Sultan & Hemp (1989) describe an analysis for a U-tube
meter in which the need for separate equations to describe the straight and curved parts of
the tube leads to requirements for the matching of boundary conditions, involving substan-
tial numerical computations. Raszillier & Durst (1991) report an analysis for a simpler,
straight tube, meter using variational techniques which lead to an approximate analytical
solution. The general approach of Raszillier & Durst was followed in the present work
because the objective was to obtain an analytical understanding of the effects of pulsating
flow; the complexity of the Sultan & Hemp solution suggested that even if pulsating
flow effects could be included, the results were unlikely to be accessible in a simple analytic
form.

The adoption of the general approach of Raszillier & Durst included the adoption of
many of their simplifying approximations. Thus, the problem tackled in the present work is
that of pulsating flow through a simple meter comprising a length of straight, uniform pipe,
rigidly built-in at its two ends and driven at the centre at the fundamental resonant
frequency. The pipe is assumed to behave as a simple Euler beam undergoing one-
dimensional, transverse vibration. All effects of axial stresses arising from end loads,
including the influence of the fluid pressure are neglected. The fluid is assumed to be inviscid
and incompressible and to be perfectly coupled to the motion of the pipe, i.e. the fluid has no
inner degrees of freedom. The physical size of typical meters, together with the expected
range of flow pulsation frequencies, suggests that the meter length will never be more than
1/10th of the wavelength of the flow pulsations. A further simplification was therefore
achieved by assuming that the longitudinal velocity of the fluid through the meter is



PULSATING FLOW EFFECTS ON CORIOLIS METERS 1027
a function only of time and not of position (the motion of the fluid due to the vibratory
motion of the pipe is of course a function of both time and position).

In this simple model of a Coriolis flow meter, it is assumed that there are motion detectors
at the 1/4 and 3/4 points and that the quantity of interest is the phase difference between the
signals from these detectors. The primary objective of this work is to determine the effect of
flow pulsations on the detector signals. In commercially available meters, the techniques
used to determine the phase difference between the detector signals vary from manufacturer
to manufacturer and are strictly confidential. Thus it is not possible, in this paper, to express
the results as ranges of pulsation frequency and amplitude where the normal meter reading
will be in error. A further result of the constraints of commercial confidentiality is that
although all meters use a sytem of feedback from the detectors to the unit which drives the
meter at a resonant frequency, it is not possible to obtain specific details of this feedback
system.

2. FORMULATION OF PROBLEM AND METHOD OF SOLUTION

The transverse vibratory motion of the pipe and the fluid is represented by writing the
displacement, u, as a function of the distance, x, along the pipe from one end, and of the
time, t. Writing force"mass]acceleration for the fluid and recognizing that since
u"u (x, t), du/dt"Lu/Lt#(Lu/Lx)(dx/dt)"Lu/Lt#» (t)Lu/Lx, the motion of the fluid is
described by
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where m
f

is the mass of fluid per length of pipe, »,»(t) is the longitudinal velocity of the
fluid, and j is the force per length exerted on the fluid by the constraining pipe. Similarly, the
motion of the pipe is described by
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where m
p

is the mass of the pipe per length and E and I are, respectively, the Young’s
modulus and the second moment of area of the pipe.

Eliminating j between equations (1) and (2) gives the equation of motion of the combined
system,
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For a meter of length ¸ the boundary conditions with respect to x are

u (0, t)"u (¸, t)"0 and
Lu

Lx
(0, t)"

Lu

Lx
(¸, t)"0,

and it is not necessary to specify the boundary conditions with respect to t at this point.
Equation (3) differs from the corresponding equation for steady flow, which was derived

by Raszillier & Durst, among others, by the presence of the second term in the [ ]. The
presence of this extra term is consistent with the assumed neglect of axial tension, etc., but it
should be noted that Paidoussis & Issid have shown that when such terms are included, this
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term no longer appears in the same form. However, the effect of incorporating a time-
dependent fluid velocity (»"»(t)) is much greater than is implied by the presence of this
extra term. When » is a constant we have a complex eigenvalue problem, with the 2» term
leading to the complexity and the »2 term leading to a small change in the system stiffness
(and hence to a small change in the system resonant frequencies). When »"»(t), the
problem changes from being a complex eigenvalue problem to a problem in which the space
and time variables are not separable. This is emphasized by expanding the term in square
brackets in equation (3) for the case »"»

0
[1#a sin(u

f
t)], obtaining
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Values of a which are of interest are in the range 0(a(1, so that for the general unsteady
case, in addition to two terms like those considered for steady flow by Raszillier & Durst,
there are four terms which imply a solution in which the dependencies on space and time are
not separable. It is clear that a simple form of general analytical solution of equation (3) is
not possible for velocity distributions of the type »"»

0
[1#a sin(u

f
t)].

However, when the orders of magnitude of the terms in equation (4) are evaluated, for
conditions typical of Coriolis flow meters, it is found that they are much smaller than the
orders of magnitude of the first two terms in equation (3). Thus, the problem is still similar
to that solved by Raszillier & Durst, in the sense that the first two terms in equation (3) will
have a dominant influence on the solution. Thus, it is reasonable to assume a solution of the
form
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where the ¼
n
(x) are the mode shapes, obtained from the solution to the equation formed by

setting the first two terms in equation (3) equal to zero, and the q
n
(t) are usually referred to

as generalized coordinates. Furthermore, the work of Raszillier & Durst suggests that it
should not be necessary to continue the summation beyond the first two or three terms.

For the present boundary conditions, the mode shapes are given by
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When the assumed form of solution is substituted into equation (3), after some re-
arrangement, the equation can be written as
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Multiplying equation (5) through by the general mode shape ¼
m
(x), integrating with respect

to x from x"0 to x"¸ and imposing the condition of orthogonality of normal modes
gives, for mode m,
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Equation (6) describes an infinite set of coupled equations for the generalized coordinates.
The following coefficients can be defined in terms of the mode shape integrals which appear
in equation (6):
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These coefficients have been evaluated up to m"n"6 and are given in Table 1. (All
the zero values in Table 1 and the identities t

m,n
"!t

n,m
and s

m,n
"s

n,m
are the

result of mathematical analysis as well as numerical evaluation). However, the work of
Raszillier & Durst (1991) and the extensions to that work by Raszillier, Alleborn & Durst
(1993), suggest that a good approximation can be obtained by considering only the
first two modes. Introducing this approximation, equation (6) yields the following pair of
equations for the generalized coordinates q

1
and q

2
(in which the explicit designation of the

dependent variable has been dropped and terms which are identically zero have been
omitted) :
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A study of the results of Raszillier & Durst suggests that for all practical Coriolis meters,
q
2

is between 100 and 1000 times smaller than q
1
.

Although the behaviour of a simple Coriolis meter in steady flow has been described by
Raszillier & Durst (1991) and can be inferred from the work of Sultan & Hemp (1989) for
a U-tube meter, it is appropriate to demonstrate that the somewhat different approach
employed in the present work gives comparable results.



TABLE 1

Numerical values of the mode shape integrals in equation (6)

t
m,n

m h
m

n 1 2 3 4 5 6

1 1)0359 0 3)399 0 !0)923 0 !0)438
2 0)9984 3)399 0 !5)512 0 !1)725 0
3 1)0000 0 5)512 0 !7)635 0 !2)528
4 1)0000 0)923 0 7)635 0 !9)704 0
5 1)0000 0 1)725 0 9)704 0 !11)752
6 1)0000 0)438 0 2)528 0 11)752 0

s
m,n

m n 1 2 3 4 5 6

1 !12)74 0 9)90 0 7)75 0
2 0 !45)98 0 17)13 0 15)17
3 9)90 0 !98)91 0 24)35 0
4 0 17)13 0 !171)58 0 31)26
5 7)75 0 24)35 0 !264)00 0
6 0 15)17 0 31)26 0 !376)15
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3. STEADY FLOW THROUGH A CORIOLIS METER

For steady flow, equation (7) can be written as
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The solution to equation (9) is of the form
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Equation (11) shows how the effective frequency of the first mode is changed very slightly
(typically 0)1—0)2%) by the influence of a steady flow through the meter. This effect is well
known both from the more general work on the dynamics of fluid/pipe interactions [e.g.,
Paidoussis & Li (1993)] and from the computed results of the analysis by Sultan & Hemp
(1989), as well as from a finite element study reported by Stack, Garnett & Pawlas (1993).
However, in none of these sources is there a simple expression which can be evaluated for
typical meter parameters, in the way that is possible from equation (11). Figure 1 shows
a comparison of the predictions of equation (11) with the finite element and experimental
results reported by Stack et al. Because of the influence of different meter geometries, the
comparison is made in terms of the ‘normalized frequency’ [frequency/(frequency for zero
flow)] against the flow rate expressed as a percentage of the normal maximum flow rate for
the meter. In a finite element study, the results of which are not yet ready for publication,



Figure 1. Variation of the drive frequency with flow rate: present predictions compared to smooth curve
representations of the data from figure 11 of Stack et al. (1993).
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computations using exactly the same approximations as in the work reported here, gave
results in very close agreement with equation (11).

Before examining the significance of the particular integral in equation (10) it is conve-
nient to examine the equation for the second mode. For steady flow, equation (7) can be
written as
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The solution to equation (12) is of the form
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Equation (14) shows that there is a small change in the effective frequency of the second
mode, with flow rate, similar to that found for the first mode.

The model meter considered here does not have any damping or any driving force. A real
meter of this geometry would be driven, at the centre of its span, by a signal derived from
one (or both) of the detectors. The feedback system would be arranged to keep a constant
amplitude (first mode) motion at the detectors. Although meter manufacturers will not
release details of the feedback process, it is clear that the drive mechanism will tend to
emphasise the significance of the sin(c

1
t) and the cos(c

1
t) terms in equation (10) relative to

the particular integral. Since the origin of the time scale is arbitrary, it is appropriate
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to choose it so that C
1,1

"0. The work of Raszillier & Durst suggests that the contribution
of the particular integral to equation (10) will be of the order of 10~3C

1, 0
. This was

confirmed by a successive approximation procedure in which the particular integral in
equation (10) was first taken to be zero, q

2
was then determined from equation (12), using
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, and then equation (9) was re-solved, evaluating the particular integral
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. For typical meter parameters the ‘improved’ solution for
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In considering the evaluation of C
2,0

and C
2,1

it is necessary to consider the starting
conditions carefully. There are two main possibilities: either to assume that the fluid is
flowing steadily with the meter not driven and then the drive is suddenly switched on; or the
meter is being driven with zero flow and then the flow is suddenly started. The present
model does not allow the simulation of the first of these conditions and it is the second
which occurs more usually in practice, since it is usual to check (and adjust if necessary) the
meter output at zero flow. For a meter driven at zero flow, q

2
will be identically zero. When

the flow is suddenly started from this condition, equation (15) becomes (neglecting the small
difference between c

1
and u
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The essential features of equation (16) are confirmed by observations of the detector signals
on actual meters. When the meters are started in the way which is modelled above, the
detector signals always contain a small component at a frequency c

2
, in addition to the

dominant signal at the drive frequency c
1
.

Combining the mode shapes and the generalized coordinates, within the approximations
of the present solution, the motion of the meter is described by

u (x, t)"C
1,0C¼1

(x)sin(c
1
t)#

2t
2,1

¼
2
(x) »c

1
m

f
¸h

2
(M

p
#m

f
) (c2

1
!c2

2
)
Mcos(c

1
t)!cos(c

2
t)ND. (17)

It is often claimed that the output signal from a Coriolis meter is derived from the phase
difference between the signals from the two detectors, which for the present model are
assumed to be placed at x"¸/4 and x"3¸/4. When, as demonstrated in equation (17), the
detector signals contain components at frequencies other than the drive frequency, it is the
phase difference between those components of the detector signals which are at the drive
frequency which is proportional to the mass flow rate. Substituting the values of ¼
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(x) and

¼
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(x) at the detector points, the phase difference, ', between the c
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detector signals, is given from equation (17) by

'"

2t
2,1

c
1
mR

¸h
2
(m

p
#m

f
) (c2

1
!c2

2
) G

¼
2
(¸/4)

¼
1
(¸/4)

!

¼
2
(3¸/4)

¼
1
(3¸/4)H, (18)

where mR ("»m
f
) is the mass flow rate of the fluid through the meter.
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by less than 10~5, the definition of u can be introduced so that equation (18) can be
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re-arranged as,
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where *t("'/c
1
) is the time difference between the detector signals.

Equation (19) and the derivation leading to it are not new. They have been introduced for
completeness and to demonstrate a parameter dependence identity with the result quoted
by Raszillier & Durst.

4. PULSATING FLOW THROUGH A CORIOLIS METER

For a time-dependent velocity of the form »"»
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written as

d2q
1

dt2
#q

1Au1
2!

s
1,1

m
f
»

0
2

¸2h
1
(m

p
#m

f
)B"

d2q
1

dt2
#c2

1
q
1

"

t
1,2

m
f
»

0
¸h

1
(m

p
#m

f
)C2M1#a sin(u

f
t)N

dq
2

dt
#au

f
cos(u

f
t) q

2
#

s
1,1

»
0

t
1,2

¸

2a sin(u
f
t) q

1D, (20)

where the justification for the omission of terms involving »2
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derivation of equation (9), and the term involving a2»2
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practically occurring values of a are in the range 04a40)2.
Equation (20) shows that the effective frequency of the first mode is changed slightly by

the mean velocity in exactly the same way as for steady flow [see equation (11)]. The last
term in equation (20) apparently describes a small periodic variation in the effective system
stiffness (for the first mode) and it is tempting to write the equation as
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The complementary function part of the solution to equation (21) is the solution to
a Mathieu equation and this would suggest the possibility of instabilities for u

f
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1
and

u
f
"2c

1
. However, before considering this suggestion of instability further, it must be

noted that practical Coriolis flow meters are driven at a modal frequency (in the present
case c

1
) by feedback using a signal derived from the motion detectors. Meter manufacturers

will not release exact details of their feedback systems, but those manufacturers who were
prepared to comment on this matter all agreed that the drive would not follow changes
occuring during a time of the order of 2n/u

f
. Thus, a practical Coriolis meter is effectively

driven at a constant frequency c
1
, and it is not clear what the effect of the periodic variation

of the effective system stiffness, contained in equation (21), will be. With this in mind,
consideration of the effects of fluid pulsations will be continued with the generalized
coordinate for the first mode described by equation (20) rather than by equation (21).

The problems regarding the possible influence of the feedback and the meter drive do not
have a significant effect on the equation describing the generalized coordinate for the second
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mode, which, by analogy with the derivation of equation (21), can be written as

d2q
2

dt2
#c

2
2q

2
!

2as
2,2

m
f
»2

0
¸2h

2
(m

p
#m

f
)
sin(u

f
t) q

2

"

t
2,1

m
f
»

0
¸h

2
(m

p
#m

f
)C2M1#a sin(u

f
t)N

dq
1

dt
#au

f
cos(u

f
t) q

1D, (22)

where c
2

is defined by equation (14), except that » is replaced by »
0
.

In order to simplify the discussion of the solution to equations (20) and (22), it is
convenient to define the following dimensionless variables:

e
m
"

2as
m,m

m
f
»

0
2

¸2h
m
(m

p
#m

f
) c2

m

(23)

and

f
m,n

"

t
m,n

m
f
»

0
u

f
¸h

m
(m

p
#m

f
)
. (24)

In terms of the new variables, equations (20) and (22) become

d2q
1

dt2
#c

1
2q

1
"f

1,2C
2

u
f

M1#a sin(u
f
t)N

dq
2

dt
#a cos(u

f
t) q

2D#e
1
c
1
2sin(u

f
t) q

1
(25)

and

d2q
2

dt2
#c2

2
M1!e

2
sin(u

f
t)Nq

2
"f

2,1C
2

u
f

M1#a sin(u
f
t)N

dq
1

dt
#a cos(u

f
t) q

1D. (26)

Adopting the same approach as for the case of steady flow, it will be assumed that the
meter starts from a condition of being filled with liquid and driven in pure first mode motion
so that u(x, t)"¼

1
(x)sin(u

1
t). At time t"0 the pulsatile flow is suddenly started. Exam-

ination of the solutions to equations (25) and (26) shows that there are wide ranges of values
for u

f
for which q

2
is of the order of 0.1% of q

1
, so that, for these conditions, the solution to

equation (25) can be approximated as q
1
"C

1,0
sin(c

1
t) (as in the case of steady flow). The

solution for pulsating flow, which will be developed from this approximation for q
1
, will

enable the identification of ranges of u
f

where the approximation is likely to fail. Because
these ranges are small and because, for reasons noted earlier, it is not possible to derive
estimates of meter error, detailed solutions for cases where q

2
is large will not be attempted.

When q
1
"C

1,0
sin(c

1
t) is substituted into equation (26), the result can be written as

d2q
2

dt2
#c2

2
M1!e

2
sin(u

f
t)Nq

2

"C
1,0

f
2,1C

2c
1

u
f

cos(c
1
t)#aG

u
f
!2c

1
2u

f

sin[(c
1
!u

f
) t]#

u
f
#2c

1
2u

f

sin[(c
1
#u

f
) t]HD.

(27)

The solution to equation (27) is of the form Mcomplementary functionN#Mparticular
integralN, where the complementary function is the solution to the equation formed by
setting the left-hand side (l.h.s.) of equation (27) equal to zero. The complementary equation
for equation (27) is the solution to a Mathieu equation [as was previously noted for
equation (21)]. This solution has regions of instability centred on u

f
"c

2
and on u

f
"2c

2
,



Figure 2. Regions of unstable solution of the Mathieu equation (plotted from data in Rao (1995).
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the approximate widths of the regions being e2
2
c
2
/2 and e

2
c
2

respectively. A graphical
representation of the regions of instability is shown in Figure 2, which is reproduced from
the analysis presented by Rao (1995). In assessing the significance of these regions of
instability it should be noted that, for a typical straight-tube Coriolis meter, e

2
is of the

order of 10~4. In an engineering environment, it is inconceivable that any fluid pulsation
frequency could be sufficiently steady and noise-free to remain within the instability region
centered on u

f
"c

2
.

Before leaving consideration of these regions of instability, it is appropriate to note that
the existence of such regions is demonstrated in all the general treatments of fluid-pipe
interactions which are discussed in the Introduction. In these treatments [e.g., Paidoussis
& Issid (1974)] the region centred on u

f
"2c

2
is referred to as the principal primary region

and that centred on u
f
"c

2
is referred to as the principal secondary region. It is notable

that the region referred to as the second primary region centred on u
f
"2c

2
/3 does not

appear in the present analysis. Figure 9 in Paidoussis & Issid suggests that the second
primary region is of even narrower extent than the principal secondary region, so that for
the reasons disscussed above it can have no practical significance for Coriolis meters.

Outside the regions of instability the influence of the e
2

term in equation (27) will be very
small and it will not significantly affect the performance of the meter. The contribution of
this term to the complementary function will therefore be neglected in the stable regions.
The particular integrals arising from the right-hand side (r.h.s.) of equation (27) are

C
1,0

f
2,1G!

2c
1

u
f
(c2

2
!c2

1
)
cos(c

1
t)#OC
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(c2
2
!c2

1
)DH,

C
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f
2,1

aG
u

f
!2c

1
u

f
[c2

2
!(c

1
!u

f
)2]

sin[(c
1
!u

f
) t]#OC

e
2

[c2
2
!(c

1
!u

f
)2]DH
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and

C
1,0

f
2,1

aG
u

f
#2c

1
u

f
[c2

2
!(c

1
#u

f
)2]

sin[(c
1
#u

f
) t]#OC

e
2

[c2
2
!(c

1
#u

f
)2]DH.

Since e
2

is of the order of 10~4, the terms O (e
2
) are negligible compared to the principal

parts of the particular integrals except for the special case of u
f
K2c

1
. When the constants

of integration in the particular integral are evaluated from the starting conditions in the
same way as for steady flow, the complete solution for the generalized coordinate for the
second mode can be written, except in the regions of instability, as

q
2
"C

1,0
f
2,1A

2c
1

u
f
(c2

1
!c2

2
)
[cos(c

1
t)!cos(c

2
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#aG
u

f
!2c

1
u
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2
2!(c

1
!u

f
)2]

sin[(c
1
!u

f
) t]#

u
f
#2c

1
u

f
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2
!(c

1
#u

f
)2]

sin[(c
1
#u

f
) t]HB .

(28)

Thus, the motion seen by the detectors is
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1,0G¼1

(¸
d
)sin(c

1
t)#¼

2
(¸

d
)

2c
1

u
f
(c2

1
!c2

2
)
[cos(c

1
t)!cos(c

2
t)]H

#C
1,0

¼
2
(¸

d
)aG

u
f
!2c

1
u

f
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2
!(c

1
!u

f
)2]

sin[(c
1
!u

f
) t]

#

u
f
#2c

1
u

f
[c2

2
!(c

1
#u

f
)2]

sin[(c
1
#u

f
) t]H, (29)

where ¸
d
is ¸/4 or 3¸/4 , depending on which detector is being considered.

Equation (29) shows that, in the presence of a pulsating flow, the signals from the
detectors contain the same information as for a steady flow at the mean flow rate, but in
addition they also contain information at frequencies which are the sum and difference of
the first (driven) mode frequency and the flow pulsation frequency. Unlike the steady flow
case where the detector signals contained only information at the first and second mode
frequencies which are quite separate, for the pulsating flow case the sum or difference
frequencies could be close to (or even equal to) one of the mode frequencies. This feature is
significant because, although manufacturers will not release details of their methods for
determining the time difference (or phase difference and signal frequency) between the
detector signals, almost all potential methods will give problems when there is a beat
frequency of the order of 1 Hz.

Examination of the flow pulsation frequencies which are likely to cause problems shows
that for u

f
"c

1
#c

2
or u

f
"c

2
!c

1
, equation (29) predicts infinite amplitude motion,

corresponding to the resonant frequency, c
2

being excited by the pulsations. The signifi-
cance of this effect in a real meter would depend on the extent to which the excitation of the
resonant frequency was limited by internal damping. For u

f
"2c

2
there is the possibility of

the pulsations exciting the Mathieu instability (parametric resonance). For u
f
"2c

1
there

are two points to be taken into account, firstly the possibility of a Mathieu instability (but
see earlier comment about the possible influence of sytem feedback) and secondly, the
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neglect of higher-order terms in the evaluation of the particular integrals leading to
equation (29) is not a valid approximation. Finally, for u

f
close to (but not equal to) 2c

1
there will be problems of a very low beat frequency, with the consequences referred to
above.

The foregoing conclusions regarding the behaviour of a Coriolis meter in a pulsatile flow
can be compared to the experimental results reported by Vetter & Notzon (1994). Unfortu-
nately, there is no mention in their paper of the method which is used to determine the phase
difference in their test meter, nor is there any report of the characteristics of the raw detector
signals. However, the error for u

f
"c

2
is very prominent in their results, and their

excitation did not go up to the case u
f
"2c

2
. The case u

f
"c

2
!c

1
is within the span of

their data, but their figure 6 shows data points at 50 and 60 Hz which are sufficiently far
away from the required 52)5 Hz for the error not to show. The degree of agreement between
the present analysis for a straight tube meter and the data of Vetter and Notzon for
a U-tube meter is not sufficient to indicate whether the general results of the present work
are generic to a range of meter shapes.

5. FLOW THROUGH AN UNDRIVEN CORIOLIS METER

In their paper, Vetter & Notzon (1994) report the determination of the characteristic
resonant frequencies of their test meter by passing a pulsatile flow through the meter with
the feedback and drive to the meter disconnected. Because the fluid forces are distributed
along the meter, it is not immediately obvious that a pulsatile flow at a particular frequency
will excite motion of the meter at that frequency. It is therefore of interest to examine this
situation in terms of the theory developed above.

It must be assumed that, for any test, there will be some small motion of the meter (much
less than would exist if the drive was activated) most probably transmitted, by material
vibration of the connecting pipework, from the device producing the pulsatile flow. In the
presence of the pulsatile flow the motion of the meter will be described by equation (3), and
via the postulation of a series solution, by equation (6). The constraints on the contributions
of the different modes no longer apply, and a set of equations, one for each mode, could be
derived from equation (6). These equations would be similar to equations (21) and (22), but
there would no longer be a good argument for resricting attention to only the first two
modes. Adopting the notation used in the analysis of the driven meter, the equations for the
generalized coordinates could be written as

d2q
1

dt2
#c2

1
[1!e

1
sin(u

f
t)]"'(q

2
, q

3
,2), (30)

d2q
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dt2
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1
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3
,2), (31)

d2q
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dt2
#c2

3
[1!e

3
sin(u

f
t)]"'(q

1
, q

2
,2), (32)

etc.
For each of the modes, when the fluid pulsation frequency is not equal to the appropriate

modal resonant frequency (modified for the effect of the mean flow), very little coherent
motion will be created by the fluid pulsations. However, when the pulsation frequency is
equal to twice that frequency, the Mathieu instability could possibly lead to a motion at the
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modal resonant frequency which would grow with time until it is bounded by material
damping within the structure of the meter. This possibility is constrained by the narrowness
(in the frequency domain) of the regions of Mathieu instability, as explained above.

There is no indication in the work of Vetter & Notzon (1994) that they were aware of the
possibility of a resonance being excited by a fluid pulsation at double the frequency, and it
must be noted that there is no indication on their figure 2 of such an effect at 155 Hz, where
it might have been expected. It is not clear whether this is due to geometric differences
between a straight tube meter and a U-tube meter, or to coarse spacing of excitation
frequencies.

6. CONCLUSIONS

A new analysis of the behaviour of Coriolis mass flow meters, using modal decomposition
techniques, has been presented. For steady flow, the results confirm the dependence
of the meter calibration factor on the modal resonant frequencies, first reported
by Raszillier & Durst (1991). In addition the analysis provides a simple analytical
expression for the small change in the resonant frequencies with flow rate which had
previously been reported from experiments and from finite element analysis. For a
pulsatile flow the analysis shows that, in general, the detector signals contain components at
four different frequencies so that the effect on the meter calibration factor depends on the
details of the method used to determine the phase difference between the two detector
signals. The analysis does not provide a complete explanation of the sensitivity of the meter
output to flow pulsations at the second resonant mode, as reported by Vetter & Notzon
(1994).

Perhaps the most important result of this analysis is that it proves that, except for two or
three discrete frequencies, a measurement of the true mean mass-flow rate, in the presence of
flow pulsations, could be derived from a Coriolis mass flowmeter, given suitable processing
of the detector signals. Furthermore, it would be relatively easy to derive a warning signal
from the detector signals when the problem pulsation frequencies are present.

The analysis is also used to demonstrate a possible mechanism by which a pulsatile flow
through an undriven meter could excite the modal resonant frequencies of the meter.
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